• nátha
    • Vazomotoros nátha – lehet, hogy ettől szenved hetek óta?

      Vazomotoros nátha – lehet, hogy ettől szenved hetek óta?

    • Ha a koronavírus nem lenne elég: épp mindenki náthás

      Ha a koronavírus nem lenne elég: épp mindenki náthás

    • Matematikai modellezés szerint náthává szelídülhet a koronavírus

      Matematikai modellezés szerint náthává szelídülhet a koronavírus

  • melanóma
    • Melanoma: kevés ismeret, késői diagnózis

      Melanoma: kevés ismeret, késői diagnózis

    • Melanoma: Jobb az esélye annak, aki nem egyedülálló

      Melanoma: Jobb az esélye annak, aki nem egyedülálló

    • Friss kutatás: Több nő jár bőrgyógyászati szűrésre

      Friss kutatás: Több nő jár bőrgyógyászati szűrésre

  • egynapos sebészet
    • Bővítéssel orvosolják a helyhiányt Budaörsön

      Bővítéssel orvosolják a helyhiányt Budaörsön

    • Jövő héttől ismét végezhető egynapos sebészeti ellátás

      Jövő héttől ismét végezhető egynapos sebészeti ellátás

    • Felfüggesztették az egynapos sebészeti ellátásokat

      Felfüggesztették az egynapos sebészeti ellátásokat

A Borrelia burgdorferi immun-elkerülési stratégiái

Lyme borreliosis 2021.02.15 Forrás: Weborvos
A Borrelia burgdorferi immun-elkerülési stratégiái

Négy pakisztáni kutató 2017-ben tudományos szakcikkben tárta fel a Borrelia burgdorferi baktérium működésének részleteit.

A Borrelia burgdorferi (BB) tartós egészségügyi problémává vált, hiszen ez a spirochéta felelős a Lyme borreliosisnak nevezett globális közegészségügyi problémaért. A BB a vektor és a gazdaszervezet különböző környezeti körülményeivel néz szembe életciklusa során. A gazdaszervezet immunrendszerének megkerülése a BB kiemelkedő jellemzője. A mai napig számos tanulmány számolt be arról, hogy a kórokozó milyen különféle mechanizmusokat használ a gazdaszervezet védekezésének elkerülése érdekében.

Négy pakisztáni kutató tudományos szakcikke arra vállalkozott, hogy összegyűjti a BB által a túléléshez alkalmazott immunológiai és molekuláris módszereket. Általában a BB extracelluláris kórokozóként ismert, amely a gazdaszervezetnek az antitestekre épülő erős immunválaszával társul. Mivel ezen kórokozók az immunelkerülési stratégiái nagyon változatosak, függetlenül az antitestek pusztító hatásától, még ilyen kedvezőtlen környezetekben is életben marad. E stratégiák közül nem biztos, hogy önmagában bármelyik is elegendő lenne a kórokozók túléléséhez.

A számos elkerülési és túlélési stratégia a BB, a vektor és a gazdaállat életciklusához igazodik.

1.      Immunelkerülés az első vérszívás során. A gazdaállat már lehet előzetesen BB ellen immunizált, ezért a vérben található ellenanyagok a még a kullancsban lévő baktériumot is elpusztíthatják. Ennek elkerüléséhez járul hozzá a felszíni lipoproteinek (OspC) és a VlsE lipoporteinek magasfokú változékonysága.

2.      A kullancs nyálában lévő proteinek hatása. A Salp15 fehérje megakadályozza a CD4 T-sejtek aktiválását, így azok nem tudnak a felszíni fehérjékhez (OspC) kapcsolódni. A Salp25D fehérje a neutrofil granulociták által termelt reaktív oxigén hatását semlegesíti. Számos más fehérje avatkozik be a makrofágok és a dendritikus sejtek aktiválásába, a kemokinek és citokinek termelődésébe, a komplementek aktiválódásába.

3.      Az emlős gazdaszervezeten belül az érzékelés elkerülése. Az első észlelés a toll-like receptorokon keresztül történik (TLR1 és TLR2, amelyeket más TLR-ek is kiegészítenek). Ezeket a kórokozó elkerülheti az IL-10 (interleukin 10) citokin termelésének (túlzott) stimulálásával, vagy a TLR általi felismerés blokkolásával.

4.      Gyors mozgás a szöveteken keresztül. A BB szöveteken keresztül is 4 mikrométer/sec sebességgel mozog, ezért elkerülheti a fagociták általi bekebelezést.

5.      A komplement rendszer leállítása. A gazdaszervezet az antitestes immunválasz mellett egy alternatív (komplement) rendszert is aktivál a fagociták mozgósítására. A BB a felszíni fehérjéi (OspE) és a p21-es fehérje segítségével kötődik az FHL-1/reconectin komplement gátló proteinhez. A CD59 glikoprotein termelődése visszafogja a membrane attack complex (MAC) kifejlődését. A komplement rendszerrel szembeni ellenállóképesség az egyik legjellemzőbb mód, amivel a spirochéták elősegítik terjedésüket a gazdaszervezeten belül.

6.      A gyulladásgátló citokinek szerepe. Az IL-10 túltermelése valójában a TNF-α termelődésének gátlását indítja be, illetve korlátozza az IFN-γ kibocsátását. Az IL-10 a gyulladáskeltő citokinek termelődésében is szerepet vállal, amellyel a gazdaszervezet fertőzésre való érzékenységét is növeli.

7.      A felszíni fehérjék rendszerének folyamatos változtatása, OspA-B-C-D-E-F „antigén-változékonyság”. A kullancs bélrendszerében a domináns fehérje az OspA, a vérszívás kezdetekor azonban az OspC fehérjék kezdenek el termelődni. Az OspA jelentősége nem teljesen ismert, de a késői fertőzés során ismét előkerül. Számos többszörösen polimorf felszíni fehérje alakul ki, elsősorban az OspC tekintetében a Borrelia különböző altörzsei, a szaporodás során létrejött változatai más-más variációkat termelnek. Ezek a variációk eltérő immunválaszt indukálnak, és mindig az adott gazdaszervezet immunválaszára legkevésbé érzékeny törzsek tudnak szaporodni.

8.      VlsE gén lokusz, egy 34 kDa molekulasúlyú fehérjét kódoló domainek „genetikai rekombinációja”. A DNS-kazetták cseréjével teljesen új genetikai variációk képződhetnek, addig ki nem fejezett génvariánsok aktivíálódhatnak, ami erősíti a BB virulenciáját.

9.      Plazmid DNS átadása bakteriofágok segítségével. A laterális géntranszfer például az OspC génjeinek alfajok, törzsek és sejtvonalak közötti átadásáról gondoskodhat.

10.  Szelekciós nyomás miatti polimorfizmus. A felszíni fehérjék sikeressége alapján az egyes sejtvonalak kiválasztódnak, ami ösztönzi a változékonyságot (rekombinációval vagy antigén-változékonysággal).

11.  Intracelluláris jelenlét. A BB gyakran rejtőzik el a fagcitózis elől, például a fibrociták membránjának mélyedéseiben, amelyek erős affinitást mutatnak a baktériumhoz való kötődésre. Ugyanígy az ízületi folyadék sejtjeibe, az endothel sejtekbe is bejuthat, sőt, a makrofágokba is. Myocitákban is kimutatták már, de leggyakrabban a szövetekben extracellulárisan fordul elő, például a gyengébb vérellátású és ezért az immunrendszer vagy gyógyszerek számára nehezen elérhető kötőszövetekben is.

A kutatók tudományos szakcikke itt érhető el, külön kérésre az eredeti verziót is rendelkezésre bocsátjuk.

Vegye fel velünk a kapcsolatot!

Legolvasottabb cikkeink